
9/27/2024

Automated
Network Tester
Research Document

(C00271395) Paul Loftus
SETU CARLOW

2024 1 Paul Loftus

Abstract
Network Reconnaissance is a necessary stage in the life cycle of both

securing networks and exploiting them. My Automated Network Tester

aims to simplify the process for penetration testers and network

administrators alike. This document delves into the background of

cyber reconnaissance, where the term comes from, and common techniques

used in Reconnaissance to gather information. I then discuss the

languages I researched to use as a code base for my program along with

the disadvantages and advantages of each. After discussing my

languages, I expanded on the GUI libraries and frameworks within my

chosen language and gave some examples on how the backend would look

like.

All that was left was to discuss and compare the technologies

assisting me in completing cyber reconnaissance along with an in-depth

analysis of how I would make use, or not benefit from the use of, each

technology or library discussed. I summarized all my points in my

summary at the bottom of this document.

2024 2 Paul Loftus

Table Of Contents
Abstract ... 1

Table Of Contents .. 2

Introduction ... 3

Background ... 4

What is Reconnaissance? .. 4

Passive .. 6

Active ... 6

Common Reconnaissance Techniques 7

Port Scanning .. 7

Data Aggregation ... 8

Operating System Fingerprinting 9

The Breakdown ... 10

Programming Language .. 10

Python .. 10

Bash .. 11

Golang .. 11

Summary ... 12

GUI Framework ... 13

What is a GUI Framework? .. 13

Tkinter ... 14

PyQt/PySide ... 14

WxPython .. 15

Tools ... 16

Cython .. 16

Nmap .. 16

Subprocess .. 16

Python3-Nmap .. 17

Scapy ... 17

Requests .. 18

2024 3 Paul Loftus

SubBrute .. 18

Knock ... 18

NetMiko ... 19

Conclusion .. 19

Figure Table .. 20

Works Cited ... 21

Introduction
Network automation has been growing increasingly within the past

decade. With the establishment of languages like python and the

increasing usage of the internet and network devices, traffic on

networks has reached an all-time high with previous tasks getting

harder and harder to manage manually. To support this, there are a

myriad of new technologies, companies and solutions coming into play

(Hicks, 2024).

My tool has the main purpose of Reconnaissance. Reconnaissance in a

cyber context has always been manual until recent years. The original

idea of cyber reconnaissance dates to early days of the computer when

it was being used for analysis rather than cyberattacks (SentinelOne,

2023). Of course, the world kept going and the internet kept growing,

Sophisticating the process of Reconnaissance into a completely new

meaning (SentinelOne, 2023). Nowadays, reconnaissance consists of

automated tools and social engineering techniques (SentinelOne, 2023).

Many people would do specialized studies to become cyber

reconnaissance experts as the techniques were complicated and diverse

(Sumanth, 2023). Automated Reconnaissance tools did not start popping

up until software and websites like Shodan.io or NMAP were released.

After which people realized the power of automating the easy parts of

reconnaissance while keeping the complexity of manual reconnaissance

at its heart.

2024 4 Paul Loftus

I have always had an interest in automation in the field of other

expertise like networking, software testing and security tooling. This

was only exacerbated by my time interning at Yahoos Product Security

Team. I gained a large amount of experience with tools I had never

used before in the company, which allowed me to think of my own thesis

idea by combining things I had done recently with something I wanted

to do, which was a reconnaissance type tool that would do enumeration

scans and tests of sorts to try find possibly exploitable parts of a

network and vulnerabilities across the network. This research document

will dive into the structure I will go with for the program. I will

also discuss the technologies I planned to use, with comparisons and

contrasts between other choices. I will also give background

information on everything needed to understand my development and the

goal I wish this program to achieve. Some of the topics I will be

going over are as follows, The Programming Language, the approach I

will take and the tools and techniques I will incorporate into the

program to perform the reconnaissance for which I am aiming.

Background

What is Reconnaissance?

Cyber Reconnaissance is a concept dating back to the very start of

computing networks where it was employed for purposes unrelated to

hacking or penetration testing (SentinelOne, 2023). At first it was a

major help in network diagnostics and management until the evolution

of networks and the internet gave threat actors the idea to use it

maliciously to scope out and map networks for a pre-emptive attack

(SentinelOne, 2023).

2024 5 Paul Loftus

Figure 1 - Reconnaissance Steps (Phipps, 2024)

Reconnaissance is the preliminary phase of cyber-attack, simulated or

authentic, as defined by Imperva (Imperva, N/A). The term originates

from military operations, although in the cybersecurity industry, it

carries a different meaning. Reconnaissance is gathering data about a

target’s systems, services, and applications, to find vulnerabilities

to exploit in a subsequent attack. (Imperva, N/A). Useful information

in terms of reconnaissance can be any data, for example, target

architecture, software versions, security measures, services currently

running, user information and more (Blumira, 2024).There is a

structure to reconnaissance. Threat actors will first determine the

scope of the network and its scale. After discovering the scope, the

next step will be to locate open ports by using tools like NMAP which

allows you to probe all ports for responses to see if they are closed,

open or filtered through complex scans with specific settings.

Information on services running on a network will also be searched for

to gain as much knowledge on the network as possible (Imperva, N/A).

After gathering all the information they can, threat actors would

finally map the network out, seeing how each service and port

communicate with each other to get a better understanding of the

network infrastructure they wish to infiltrate (Blumira, 2024) .There

are 2 main differentials when it comes to Reconnaissance, Passive and

Active.

2024 6 Paul Loftus

Figure 2 - Types of Reconnaissance

Passive

Passive Reconnaissance involves being more of a bystander in terms of

gathering the information you wish to use against a system. It is much

stealthier and leaves less dirt on your footprint. The most common

techniques in Passive Reconnaissance are as follows: network traffic

analysis, using packet sniffers like Wireshark (GUI) or sniffr (CLI).

Monitoring public channels of communication like social media or

investigating public files and employees. For my project specifically,

I wished for the user to be able to choose an approach. With the

technologies listed below, I would like to implement passive Nmap

scans for host discovery and enumeration. In addition to this, I would

make use of the scapy module, also discussed below, to attempt to

capture packet data sent to open ports found through the passive nmap

scans.

Active

Active Reconnaissance can be much more effective and fast with the

downside of being extremely detectable and alerting (Imperva, N/A).

Usually, it consists of a direct involvement with the target’s systems

meaning there is a much larger chance of logs of your attempts being

left (Imperva, N/A). Common Active Reconnaissance tools include port

scanners, network scanners and vulnerability scanning. These tools can

give you a myriad of information to use to propagate an attack, either

through DNS poisoning, DHCP Spoofing, MiTM Attacks, and other

techniques. the most secure companies and systems would have many of

their services, servers and technologies hidden on the internet so

that information gathering attempts would not work against them.

2024 7 Paul Loftus

Common Reconnaissance Techniques

Port Scanning

Ports are ever present in this age of technology. No device has none

unless they have been purposefully left out of the design or removed.

This means there is always a need to secure your ports for important

devices.

Port scanning is a popular technique that involves surveilling

computer ports on either common port numbers or large amounts to find

open and vulnerable ports (Blumira, 2024). There are a total of 65,535

ports in 1 IP Address (Blumira, 2024). This leaves 65,535 ports that

could become an attack vector into your network.

Many tools exist to perform port scanning on networks, one of these

being Nmap which I discuss below in relation to my program

(Shivanandhan, 2020). These tools can be very powerful within a threat

actors toolbelt. Port scanning can be done in two ways,

silently/Stealthily or Aggressively (Blumira, 2024). Usually, port

scanning is performed on port numbers after the 1024 mark as anything

before this are standard service ports and may have already been

filtered or closed (Blumira, 2024).

To avoid having to scan every single port unless specified, my tool

was to scan the most popular ports as a start and then attempt other

methods if unsuccessful. Some common ports I found through my research

are as follows:

• Port 80 (HTTP) – One of the most common ports on the internet,
used for access to web server resources. (unsecure)

• Port 23 (Telnet) - Telnet, a predecessor of SSH, used for remote
connections(unsecure)

• Port 443 (HTTPS) - SSL-encrypted web servers use this port by
default. (secure)

• Port 21 (FTP) – File Transfer Protocol

• Port 22 (SSH)—Secure Shell, an encrypted replacement for Telnet
(and, in some cases, FTP).

• Port 25 (SMTP)—Simple Mail Transfer Protocol (also insecure).
• Port 3389 (ms-term-server)—Microsoft Terminal Services

administration port.

• Port 110 (POP3)—Post Office Protocol version 3 for email
retrieval (insecure).

2024 8 Paul Loftus

• Port 445 (Microsoft-DS)— commonly used for file or printer
sharing

• Port 139 (NetBIOS-SSN)—NetBIOS Session Service for communication
with MS Windows services (such as file/printer sharing).

• Port 143 (IMAP)—Internet Message Access Protocol version 2. An
insecure email retrieval protocol.

• Port 53 (Domain)—Domain Name System (DNS), an insecure system for
conversion between host/domain names and IP addresses.

• Port 135 (MSRPC)—Another common port for MS Windows services.
• Port 3306 (MySQL)—For communication with MySQL databases.

• Port 8080 (HTTP-Proxy)—Commonly used for HTTP proxies or as an
alternate port for normal web servers

• Port 1723 (PPTP)—Point-to-point tunnelling protocol (a method of
implementing VPNs which is often required for broadband
connections to ISPs).

• Port 111 (RPCBind)—Maps SunRPC program numbers to their current
TCP or UDP port numbers.

• Port 995 (POP3S)—POP3 with SSL added for security.

• Port 993 (IMAPS)—IMAPv2 with SSL added for security.

• Port 5900 (VNC)—A graphical desktop sharing system (insecure).

Data Aggregation

Data Aggregation is, as my source states, ‘the process of gathering

and consolidating diverse sets of information and resources from

disparate sources into a comprehensive framework’ (LarkSuite Editorial

Team, 2024). Now in the context of cybersecurity, this has proved very

useful in terms of incident response rates and dealing with

cybersecurity related attacks or issues (LarkSuite Editorial Team,

2024). Normally, sources will consist of network logs, IDS/IPS

Intrusion logs, System event logs, application-specific logs and more

(LarkSuite Editorial Team, 2024). Data aggregation is normally used to

detect cyber incidents but for this research document, I am going to

focus more on data aggregation on the side of threat actors.

Malicious Data Aggregation is slightly different, as the intention

behind the data collection is to use against a certain individual,

company, or asset (VPNUnlimited, 2024). A threat actor would access

online sources, possibly on social media or through public databases,

2024 9 Paul Loftus

to gather personal information like your age, name, what your face

looks like, your family members, etc. to ultimately use against you

(VPNUnlimited, 2024). This can come in a variety of forms from brute

forcing your passwords to personalized phishing messages designed to

catch your eye.

Operating System Fingerprinting

O.S Fingerprinting involves analyzing data packets from a network, to

find intelligence that could be used in a malicious attack (Firewalls,

2024). Information about OS specific configurations can determine what

Operating System a packet originated from, which in turn makes it

easier for threat actors to target known vulnerabilities. For networks

containing outdated network and end devices, and even remote devices,

this reconnaissance method can very quickly become a weakness in a

network’s defenses. The only downside of this is the time it takes to

gather valuable information although with the fact that only 55% of

companies actually run cybersecurity assessments on their networks and

infrastructure, there is a larger chance of finding a vulnerability

through outdated security policies and versions (TerraNovaSecurity,

2024)

Operating System Fingerprinting can be executed passively or actively.

Passively, it involves analyzing data packets being sent between

devices on a network (Firewalls, 2024). Actively, O.S Fingerprinting

transform into sending packets to devices on a network and analyzing

the TCP packet contents for valuable data. The difference between the

two execution methods is:

• Your presence and likelihood of being detected.

• The execution time

The chosen method of O.S Fingerprinting should depend on your

situation and what you are trying to achieve, the time limit you have,

and how exposed you want yourself to be on a foreign network.

2024 10 Paul Loftus

The Breakdown

Programming Language

Python

My first choice for this project was Python. As a language, Python is

an Interpreter-based, high level programming language with Object

Orientated Programming, polymorphism, dynamic types, and easy setup

(Python Software Foundation, N/A). Python was created in 1991 by a

programmer named Guido Van Rossum, who was looking to create a

language that was more human readable (Python Software Foundation,

N/A). I had a high ability in it already which made the logic of the

program much easier to imagine. I also had complete projects with

similar specifications in my time at Yahoo doing my work placement

which gave me confidence on if I (University Of Michigan, 2024)would

be able to complete this project in the necessary time constraints.

Python also had features that appealed to me in this project, like its

high library count for things like data manipulation (GeeksForGeeks,

2024) and its vast array of networking Libraries (JavatPoint, 2024).

The fact it is more human readable is also a bonus for both my

academic supervisors and me.

Figure 3 - Python Logo (Python Software Foundation, N/A)

The only problems I had with python was that in terms of speed, it was

lackluster in comparison to my other possible choice and it was also

not as accessible with other tools due to it being a high level

language, which meant I would have to either find libraries or

workarounds to use the tools I wanted to use (Python Software

Foundation, N/A). It also has dynamic types which can be a double-

2024 11 Paul Loftus

edged sword as exceptions can arise from unexpected data types

(GeeksForGeeks, 2024). Garbage collection is also a downside, as it is

implemented but not natively, meaning you would manually have to set

up garbage collection (Builtin, 2024). Python is also known as a

universally portable language and doesn’t have many problems with

running on different systems and distributions unless you are using an

OS-specific library which would of course fail on another system.

(GeeksForGeeks, 2024)

Bash

Bash is a good and bad contender for this program. It is fast and used

in automation all over the world which seems very fitting considering

the project title (Hoffman, 2016). I had done 5 months Bash scripting

for my internship meaning I did not have to go in blind to begin

coding my project and I had already been learning more about Bash

commands throughout the year. The problem with Bash was that it was

not built to be a fully-fledged programming language. Bash is designed

to handle text processing, file operations and scripting. (IuvoTech,

2024). The syntax is very awkward and strict, and errors are only

discovered at run-time. It is nice that is available on all Linux

systems, but portability is an issue as attempting to run bash scripts

on windows does not fare well unless using the new Windows Subsystem

for Linux (WSL). (Hoffman, 2016)

Figure 4 - Bash Logo (Akulov, 2001)

Golang

Go is a language developed by Google Engineers with system level

programming, infrastructure, and networking in mind (Boyd, 2024). It

has a simple syntax with similarities to C/C++. I had the chance to

see a matured, Enterprise-level project written in Go and thus I

thought it might be a choice for my project. The compiler does not

2024 12 Paul Loftus

require a VM and compiles into a Binary File, making execution easy

and portable on most distributions of Operating Systems (Barney,

2023). The language has independent error handling, automatic garbage

collection and concurrency which is vital in a program like this which

can be running many scans each iteration. (Barney, 2023) The

limitations with this language is that the binaries you produce can be

extremely large in some cases as they directly compile into

Executable files. (Barney, 2023) Another issue arises when you put RAM

usage into consideration as this language can devour your RAM when

running multiple instances/files. This could mean disaster for

machines attempting to run the tool with lower ram with the memory

being filled to the brim after running the binary. (Barney, 2023). Go

also has limited GUI Programming support (Esenyi, 2023).

Figure 5 - Golang Logo (Google, 2024)

Summary

After hard consideration, I decided to go with the Python approach.

There were many deciding factors in this decision. Firstly, Python, in

comparison to Go or Bash, had the easiest to read Syntax along with

the status as an open source project which meant there was no

proprietary worries when I would be publishing this tool to GitHub.

(GeeksForGeeks, 2024)

Secondly, there was GUI Programming support, which was impossible on

Bash as it was a CLI only Tool. Golang could have a GUI, but I had

more experience building GUIs on Python rather than Golang which I had

brief experience with (Esenyi, 2023). Thirdly, Python has a massive

standard library along with over 137,000 installable libraries

available through the Python package Index meaning that anything I

want to do, is most likely possible using one of these libraries

(University Of Michigan, 2024) unlike Bash which was mainly built for

2024 13 Paul Loftus

scripting and text/file processing (Hoffman, 2016). Another factor I

took into consideration was the ram usage my program would have from

Go. I had researched and found a company that had shown how much their

CLI tool was using the ram on their machine, below is a figure to show

an example (Gritter, 2021)

Figure 6 - GO RAM Usage (GBs) (Gritter, 2021)

As you can see from the above figure, the memory usage of their tool

would reach up to 5 Gigabytes of memory usage (Gritter, 2021). This

was an extreme amount, no matter how large their program is. In the

article, the author was able to reduce Go’s RAM Usage to a stable

amount, but this was after having to alter the internal Go Garbage

Collector and add limits to how much memory the program can use while

being careful to not limit more than he should. Thus, crashing the

program (Gritter, 2021). The author had to essentially trim at every

part of the program to reduce the memory usage (Gritter,

2021).Personally, I saw this as a lot of extra work when I could avoid

this problem entirely by not using Go.

GUI Framework

What is a GUI Framework?

A Graphical User Interface (GUI) is defined as a digital interface in

which users interact with graphical components like buttons, menus and

icons to operate a program, as opposed to a CLI (Juviler, 2022). For

my program, I opted for a GUI rather than a Command Line Interface

(CLI) tool to make using the program easier for other users. CLI tools

are notoriously harder to use so a GUI made sense to implement. I had

used some frameworks in the past for my personal projects, but I did

2024 14 Paul Loftus

not have enough experience to not research so below I list some of the

possible options. Most of the libraries I researched had similar

syntax and structure which means that migrating to a different library

would also be simple enough (Fitzpatrick, 2024).

Tkinter

Tkinter is the most commonly used python library for building GUIs, so

much so that it has been integrated into the python standard library

and comes bundled with python’s default installation (Fitzpatrick,

2024). The library is a pure GUI library, not a framework, unlike

other similar libraries I list below (Fitzpatrick, 2024). Tkinter

lacks built-in support for some functions like displaying multi-media,

interfacing with data sources and databases, and the components can

look outdated on windows OS (Fitzpatrick, 2024). The advantage with

Tkinter is that it needs no additional dependencies.

Tkinter seems like a good option as it is already built into the

python library meaning I will not need to increase the size of my

project any more than I already am with the many tools I plan to use.

In a way this would be efficient to use Tkinter but if I wish to make

a more complex GUI then I know that is where Tkinter falls. I also saw

how some components looked on Windows OS as mentioned, and it seemed

to me that the components did look outdated. The other factor that

comes into consideration is that Tkinter is cross-platform making it

easier to keep my program universally accessible to both Windows and

Linux Distributions.

PyQt/PySide

PyQt and PySide are both wrappers built around the Qt Framework

(Fitzpatrick, 2024). The Qt framework is a cross-platform GUI

framework built in C++ (Kubara, 2023). With a large tech community

behind it and many online resources to develop, PyQt is favored for

modern commercial application development (Fitzpatrick, 2024). Qt can

run on most common and even uncommon Operating Systems, e.g., Windows,

Linux, QNX, Android and IOS (Kubara, 2023).

2024 15 Paul Loftus

With the Qt framework, there are many added pieces of functionality.

They come in the form of addons and include the following. Interfacing

with SQL Databases, playing multi-media files like mp4,

templated/quick layouts, and even network layer assistance with server

communication and implementing network protocols (Kubara, 2023). The

benefits of Qt can be easily seen, but it does come with

disadvantages. One to note is the complexity of the framework as with

all tools online, the more you can do with a tool, the more you need

to learn (Fitzpatrick, 2024). For my project I was unsure if this

framework would work in my favor by enhancing the GUI, and if the time

required to build it would be worth it. As I did not have basic GUI

library experience, this library seemed daunting to use. This was the

deciding factor behind my decision not to use this library. Below is

an example of a simple GUI built with the PyQt Library to show you how

the program is structured (Fitzpatrick, 2024).

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("Hello World")

 button = QPushButton("My simple app.")

 button.pressed.connect(self.close)

 self.setCentralWidget(button)

 self.show()

app = QApplication(sys.argv)

w = MainWindow()

app.exec()

Figure 7 - Example of PyQt Code (Fitzpatrick, 2024)

WxPython

WxPython is a wrapper for a GUI toolkit named WxWidgets (Fitzpatrick,

2024). WxWidgets is a cross-platform toolkit written in C++. Both

WxWidgets and WxPython are open source and free to use. My goal is to

only use open-source tools which this library supports towards that

end. Like the Qt Framework, this library uses native widgets and

components to create GUIs, decreasing the size of the codebase behind

the application built with it (Fitzpatrick, 2024). One of the

disadvantages of using WxPython I found through my research, was the

2024 16 Paul Loftus

fact it has platform-specific ‘Quirks’ or bugs (Fitzpatrick, 2024).

This unfortunately means that maintaining cross-platform compatibility

would be harder as I build the program. I wanted to ensure that cross-

platform compatibility would always be a priority of the program, so I

decided that perhaps WxPython was not the best fit for my project.

Tools

Cython

Cython is a static compiler for the python language that helps its

performance issues but interlacing it with the C language. (Cython,

2007). It will allow me to add static types to variables, call

functions from optimized low-level libraries in C, and interact with

large datasets in an efficient way (Cython, 2007). I wanted to try

make my program as efficient as possible so that I could do much more

in a single iteration without compromising the performance of the

tool. I am still on the fence on whether I will be required to use

Cython depending on the natural runtime of my program, but it is good

to have a backup plan.

Nmap

Network Mapper (Nmap) is an open-source tool developed by Gordon Lyon

which would allow users of the tool to scan networks for open ports,

accessible services and map out a network (Shivanandhan, 2020). You

are given access to a very efficient program that allows you to build

both simple and complex commands using their own scripting engine.

This tool is a staple in the security industry. This tool would be

vital in my program’s backend as this will allow me to get a large

dataset to begin investigating a network. I would need to run multiple

queries for my program to test open ports and services, which

thankfully Nmap is very flexible and portable allowing me to discard

my worry of a cross-platform bug.

Subprocess

For me to interface with Nmap through Python, I could choose two
approaches. The first one I thought of was one that I had implemented
before in a previous project, the Subprocess Module (Geeks4Geeks,

2024 17 Paul Loftus

2024), The purpose of this module is to spawn child processes with
shell commands running (Geeks4Geeks, 2024). I had previously used this
method to interface with other CLI Tools with successful results. To
properly use this method, first you would need to create methods to
spawn the processes using `subprocess.check_output` (Geeks4Geeks,
2024). This returns the output of whatever command you placed inside
the function. Then you would need to parse the output from the command
line into a format you can access and re purpose the data with.
This is very possible, but I wanted to save this module for the other
CLI tools that have no API to interface with Python, as I would have
to spend extra time on building the commands and parser for each
module.

Python3-Nmap

The second and final option I went with to interact with Nmap was a
library I found on the Pypi index (Wangolo, 2024). The package comes
filled with methods that would prove very useful to me. I planned on
using the TCP/IP Fingerprinting command
`nmap_os_detection("192.168.178.2")`
To retrieve any data on the Operating Systems being ran. there is also
the ping scan method along with different scanning techniques built in
so that I can try multiple different ways to scope out the network my
program runs on. Other commands include:

• Version Scanning

• Idle scanning

• Fin scan
• Only port scan (-Pn)

• Only host discover (-sn)

• Arp discovery on a local network (-PR)

• Disable DNS resolution (-n)

• Dns brute script scan (subdomain enumeration)
With these commands, it seems like a large enough codebase for me to
use to interface with Nmap. I could also attempt to implement a
subprocess call to make up for the methods that were not implemented
yet into the library.

Scapy

Scapy is a powerful packet manipulation library built in 2008 and

maintained since then (Scapy, 2008). It has such an extensive set of

classes and functions that it is now built into the standard library

2024 18 Paul Loftus

that comes with python. When I say packet manipulation, what I mean is

that Scapy can decode, manufacture, capture, and match packets within

the python language (Scapy, 2008). My goal with this library is the

utilization of capturing packets if I can make a connection to any

ports or sockets on the target network. Scapy has extensive

documentation which gives me a lot of wiggle room as I do not have to

worry about running into undocumented errors or problems.

Requests

Requests is a simple HTTP Library built into python’s standard

library. It can send requests, receive responses, and alter

parameters, headers, and SSL Certificates (Ronquillo, 2024). I have

experience using requests from some web scraping projects I did which

made this library come to mind when I was researching. With this

library, I hope to test web servers connected to networks to see if

they can be accessed by sending test HTTP(S) requests to active web

servers on a network and analyzing the response sent back.

SubBrute

When doing my research, I wanted to find a tool that could do DNS

enumeration in the case that if the program is executed on an internet

facing domain, it can scan the DNS server for possible entry points.

This is when I found SubBrute, a DNS-Spider Subdomain enumeration tool

built in Python (TheRook, 2024). Support has been added to use it

within python code instead of only being a standalone tool (TheRook,

2024). Using SubBrute, I hope to investigate domain servers and their

connections within a network, mapping the network to the best of the

module’s ability.

Knock

Knock is another Subdomain enumeration tool. The difference between

SubBrute and Knock is that Knock is a passive reconnaissance tool that

uses dictionary attacks, while SubBrute is a DNS Spider tool with a

much more aggressive approach. There is a flag to opt for brute force

scanning within the tool, but the default is passive. This tool also

allows you to control many parts of the scan including custom DNS,

User agent, and threads. I will attempt to use both knock and SubBrute

in my program and after testing, will decide if running two

enumeration tools yields better results than just the one, or if the

performance difference will invalidate such claims. Knock would also

2024 19 Paul Loftus

be a good option for the passive reconnaissance side of things as I

wish to implement an option between the two.

NetMiko

NetMiko is a pure python SSHv2 Implementation available for python

3.6+ (PyNetLabs, 2024). The library has gained mass popularity with

network administrators and automation experts (PyNetLabs, 2024).

NetMiko supports a large selection of network device brands including

the following and more (Samoylenko, 2024):

• Arista vEOS

• Cisco ASA

• Cisco IOS

• Cisco IOS-XR

• Cisco SG300

• HP Comware7

• HP ProCurve

• Juniper Junos

• Linux

Along with multiple-device support, Netmiko also supports telnet

connections, albeit restricted to cisco devices (Samoylenko, 2024).

Netmiko is built upon the paramiko library meaning it has extended

functionality and better support overall (PyNetLabs, 2024). My goal

with NetMiko is to attempt testing vulnerable SSH/Telnet ports when my

program can find open ssh ports. I would be using the library for its

ability to connect to network devices rather than to change

configuration or send commands. I have no need to interact with the

device OS but just to see if it is possible to make an unauthenticated

connection.

Conclusion

As I have researched into Reconnaissance and its importance in the

world of cyber security, I have gained a deeper understanding of how

to build a tool that will not only simplify but be a proper choice for

the starting steps of scoping a network and its devices. My analysis

of common techniques used in reconnaissance have given me ideas on how

to approach testing networks on both the internet and internally,

along with the information usually gathered in such steps. After

comparing programming languages that I thought would suit my purpose,

2024 20 Paul Loftus

I have also come to find that Python in its simplicity and extensive

functionality would be the best option for me as a programmer, both

personally and logically, while other languages fell in rank with

their different disadvantages. Like bash’s scripting functionality,

among other things, which would have decreased my tools ease of use

and the level of programming I would need to put in place.

My research into the technologies for my programs GUI I found online

also revealed to me that certain GUI frameworks in python are for very

different use cases, like Tkinter’s easy design and setup versus

PyQt/PySides framework which gives expanded functionality in the form

of addons. They can also have their disadvantages as I found with

WxPython’s “quirks” which are platform specific leading me to believe

that I might have trouble maintaining cross-platform compatibility.

I have also done extensive research into the tools that I May or may

not need to use to reach the full potential of my program. I have

found some industry standard libraries and tools like Nmap, Subprocess

and Scapy with would allow me to interact with network layer protocols

and devices through Python. I have also found some smaller, uncommon

tools that could boost my tools productivity like Knock or SubBrute

for subdomain enumeration or NetMiko for testing connections to

accessible network devices. I also contrasted the issues I had found

with these tools and whether they validated my reason for using them

versus the drawbacks they would give me in my implementation section

of this project.

Figure Table

Figure 1 - Reconnaissance Steps (Phipps, 2024) 5

Figure 2 - Types of Reconnaissance 6

Figure 3 - Python Logo (Python Software Foundation, N/A) 10

Figure 4 - Bash Logo (Akulov, 2001) 11

Figure 5 - Golang Logo (Google, 2024) 12

Figure 6 - GO RAM Usage (GBs) (Gritter, 2021) 13

Figure 7 - Example of PyQt Code (Fitzpatrick, 2024) 15

2024 21 Paul Loftus

Works Cited
Akulov, D., 2001. Bash Logo. [Online]

Available at: https://bashlogo.com/

[Accessed 10 11 2024].

Barney, N., 2023. What Is Golang?. [Online]

Available at:

https://www.techtarget.com/searchitoperations/definition/Go-

programming-language

[Accessed 10 13 2024].

Blumira, 2024. Port Scanning. [Online]

Available at: https://www.blumira.com/glossary/port-scanning

[Accessed 29 10 2024].

Blumira, 2024. Understanding Reconnaissance Techniques. [Online]

Available at: https://www.blumira.com/glossary/reconnaissance

[Accessed 20 10 2024].

Boyd, W., 2024. What is Go, An Intro into googles Go Programming

Language A.K.A Golang. [Online]

Available at: https://www.pluralsight.com/resources/blog/cloud/what-

is-go-an-intro-to-googles-go-programming-language-aka-golang

[Accessed 13 10 2024].

Builtin, 2024. Garbage collection in Python. [Online]

Available at: https://builtin.com/articles/garbage-collection-in-

python

[Accessed 13 10 2024].

Cython, 2007. Cython. [Online]

Available at: https://cython.org/

[Accessed 13 10 2024].

Esenyi, S., 2023. Best GUI Frameworks for Go. [Online]

Available at: https://blog.logrocket.com/best-gui-frameworks-go/

[Accessed 12 10 2024].

Firewalls, 2024. OS Fingerprinting. [Online]

Available at: https://www.firewalls.com/blog/security-terms/os-

fingerprinting/

[Accessed 4 11 2024].

2024 22 Paul Loftus

FITA Academy, 2024. ultimate guide to tools and techniques of

reconnaissance in ethical hacking. [Online]

Available at: https://www.fita.in/ultimate-guide-to-tools-and-

techniques-of-reconnaissance-in-ethical-hacking/

[Accessed 1 11 2024].

Fitzpatrick, M., 2024. Which Python GUI Library should you use?.

[Online]

Available at: https://www.pythonguis.com/faq/which-python-gui-

library/?gad_source=1&gclid=Cj0KCQjwsoe5BhDiARIsAOXVoUtZWARH9HAOBjqKYa

QoNna-kCplL2F_ffNSSldf2pUlkN59KJ-o0mUaArNjEALw_wcB

[Accessed 23 10 2024].

Geeks4Geeks, 2024. Subprocess Module. [Online]

Available at: https://www.geeksforgeeks.org/python-subprocess-module/

[Accessed 07 11 2024].

GeeksForGeeks, 2024. Libraries in Python. [Online]

Available at: https://www.geeksforgeeks.org/libraries-in-python/

[Accessed 13 10 2024].

GeeksForGeeks, 2024. Python Features. [Online]

Available at: https://www.geeksforgeeks.org/python-features/

[Accessed 13 10 2024].

Google, 2024. Directory blog/go-brand/Go-Logo/PNG. [Online]

Available at: https://go.dev/blog/go-brand/Go-Logo/PNG/

[Accessed 10 11 2024].

Gritter, M., 2021. Taming Go's Memory Usage, or How We Avoided

Rewriting Our Client IN Rust. [Online]

Available at: https://www.akitasoftware.com/blog-posts/taming-gos-

memory-usage-or-how-we-avoided-rewriting-our-client-in-rust

[Accessed 07 11 2024].

Hicks, M., 2024. The Path to Network Automation is now clearer and

more defined.. [Online]

Available at: https://itbrief.com.au/story/the-path-to-network-

automation-is-now-clearer-and-more-defined

[Accessed 26 10 2024].

Hoffman, C., 2016. How to create and run bash shell scripts on windows

10. [Online]

2024 23 Paul Loftus

Available at: https://www.howtogeek.com/261591/how-to-create-and-run-

bash-shell-scripts-on-windows-10/

[Accessed 13 10 2024].

Imperva, N/A. What is Reconnaissance. [Online]

Available at: https://www.imperva.com/learn/data-

security/cybersecurity-reconnaissance/

[Accessed 8 10 2024].

Imperva, N/A. What is Reconnaissance in CyberSecurity. [Online]

Available at: https://www.imperva.com/learn/data-

security/cybersecurity-reconnaissance/

[Accessed 9 10 2024].

IuvoTech, 2024. Bash VS Python. which scripting language is right for

your needs. [Online]

Available at: https://blogs.iuvotech.com/bash-vs.-python-which-

scripting-language-is-right-for-your-it-needs

[Accessed 13 10 2024].

JavatPoint, 2024. Top Python Libraries for Network Engineering.

[Online]

Available at: https://www.javatpoint.com/top-python-for-network-

engineering-libraries

[Accessed 10 12 2024].

Juviler, J., 2022. What is a GUI. [Online]

Available at: https://blog.hubspot.com/website/what-is-gui

[Accessed 21 10 2024].

Kubara, I., 2023. What is the Qt Framework and why should you use it?.

[Online]

Available at: https://lembergsolutions.com/blog/why-use-qt-framework

[Accessed 01 11 2024].

LarkSuite Editorial Team, 2024. Data Aggregation. [Online]

Available at: https://www.larksuite.com/en_us/topics/cybersecurity-

glossary/data-aggregation

[Accessed 05 11 2024].

Phipps, J., 2024. How Hackers Use Reconnaissance. [Online]

Available at: https://www.esecurityplanet.com/threats/how-hackers-use-

2024 24 Paul Loftus

reconnaissance/

[Accessed 31 10 2024].

PyNetLabs, 2024. What is NetMiko. [Online]

Available at: https://www.pynetlabs.com/what-is-netmiko-and-how-to-

use-it-in-python/

[Accessed 25 10 2024].

Python Software Foundation, N/A. What is Python? Executive Summary.

[Online]

Available at: https://www.python.org/doc/essays/blurb/

[Accessed 13 10 2024].

Ronquillo, A., 2024. Requests in Python. [Online]

Available at: https://realpython.com/python-requests/

[Accessed 17 10 2024].

Samoylenko, N., 2024. Python for network Engineers. [Online]

Available at:

https://pyneng.readthedocs.io/en/latest/book/18_ssh_telnet/netmiko.htm

l

[Accessed 25 10 2024].

Scapy, 2008. Scapy. [Online]

Available at: https://scapy.net/

[Accessed 18 10 2024].

SentinelOne, 2023. What Is Cyber Reconnaissance. [Online]

Available at: https://www.sentinelone.com/cybersecurity-101/threat-

intelligence/what-is-cyber-reconnaissance/

[Accessed 06 11 2024].

Shivanandhan, M., 2020. What is NMAP and how to use it. [Online]

Available at: https://www.freecodecamp.org/news/what-is-nmap-and-how-

to-use-it-a-tutorial-for-the-greatest-scanning-tool-of-all-time/

[Accessed 13 10 2024].

Sumanth, G., 2023. Manual Reconnaissance VS Automated Reconnaissance..

[Online]

Available at: https://www.appsecengineer.com/blog/manual-vs-automated-

reconnaissance

[Accessed 26 10 2024].

2024 25 Paul Loftus

TerraNovaSecurity, 2024. 130 Cybersecurity Statistics. [Online]

Available at: https://www.terranovasecurity.com/blog/cyber-security-

statistics

[Accessed 10 11 2024].

TheRook, 2024. Sub Brute, a Subdomain Enumeration Tool. [Online]

Available at: https://github.com/TheRook/subbrute

[Accessed 21 10 2024].

University Of Michigan, 2024. Installing Libraries And Packages.

[Online]

Available at: https://docs.support.arc.umich.edu/python/pkgs_envs/

[Accessed 14 10 2024].

VPNUnlimited, 2024. Aggregation Attack. [Online]

Available at:

https://www.vpnunlimited.com/help/cybersecurity/aggregation-attack

[Accessed 4 11 2024].

Wangolo, J., 2024. Python3-nmap. [Online]

Available at: https://pypi.org/project/python3-nmap/

[Accessed 7 11 2024].

 (Fitzpatrick, 2024)

